toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print

Warning: mysql_fetch_field() expects parameter 2 to be long, string given in /home/arimmora/public_html/refbase/includes/include.inc.php on line 309
  Record Links
Author (up) Cameron, I.L.; Sun, L.-Z.; Short, N.; Hardman, W.E.; Williams, C.D. url  doi
openurl 
  Title Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis Type Journal Article
  Year 2005 Publication Cancer Cell International Abbreviated Journal Cancer Cell Int  
  Volume 5 Issue Pages 23  
  Keywords  
  Abstract BACKGROUND: The effects of a rectified semi-sinewave signal (15 mT amplitude, 120 pulses per second, EMF Therapeutics, Inc.) (TEMF) alone and in combination with gamma irradiation (IR) therapy in nude mice bearing a human MDA MB231 breast cancer xenograft were tested. Green fluorescence protein transfected cancer cells were injected into the mammary fat pad of young female mice. Six weeks later, mice were randomly divided into four treatment groups: untreated controls; 10 minute daily TEMF; 200 cGy of IR every other day (total 800 cGy); IR plus daily TEMF. Some mice in each group were euthanized 24 hours after the end of IR. TEMF treatment continued for 3 additional weeks. Tumor sections were stained for: endothelial cells with CD31 and PAS or hypoxia inducible factor 1alpha (HIF). RESULTS: Most tumors <35 mm3 were white but tumors >35 mm3 were pink and had a vascularized capsule. The cortex within 100 microns of the capsule had little vascularization. Blood vessels, capillaries, and endothelial pseudopods were found at >100 microns from the capsule (subcortex). Tumors >35 mm3 treated with IR 24 hours previously or with TEMF had decreased blood vessels in the subcortex and more endothelial pseudopods projecting into hypoxic, HIF positive areas than tumors from the control group. Mice that received either IR or TEMF had significantly fewer lung metastatic sites and slower tumor growth than did untreated mice. No harmful side effects were attributed to TEMF. CONCLUSION: TEMF therapy provided a safe means for retarding tumor vascularization, growth and metastasis.  
  Address Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, USA. cameron@uthscsa.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-2867 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16045802 Approved no  
  Call Number IT'IS @ evaj @ Serial 289  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: