toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print

Warning: mysql_fetch_field() expects parameter 2 to be long, string given in /home/arimmora/public_html/refbase/includes/include.inc.php on line 309
  Record Links
Author (up) Edelman, N.B.; Fritz, T.; Nimpf, S.; Pichler, P.; Lauwers, M.; Hickman, R.W.; Papadaki-Anastasopoulou, A.; Ushakova, L.; Heuser, T.; Resch, G.P.; Saunders, M.; Shaw, J.A.; Keays, D.A. url  doi
openurl 
  Title No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening Type Journal Article
  Year 2015 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 112 Issue 1 Pages 262-267  
  Keywords magnetite; magnetoreception; pigeons  
  Abstract The cellular basis of the magnetic sense remains an unsolved scientific mystery. One theory that aims to explain how animals detect the magnetic field is the magnetite hypothesis. It argues that intracellular crystals of the iron oxide magnetite (Fe3O4) are coupled to mechanosensitive channels that elicit neuronal activity in specialized sensory cells. Attempts to find these primary sensors have largely relied on the Prussian Blue stain that labels cells rich in ferric iron. This method has proved problematic as it has led investigators to conflate iron-rich macrophages with magnetoreceptors. An alternative approach developed by Eder et al. [Eder SH, et al. (2012) Proc Natl Acad Sci USA 109(30):12022-12027] is to identify candidate magnetoreceptive cells based on their magnetic moment. Here, we explore the utility of this method by undertaking a screen for magnetic cells in the pigeon. We report the identification of a small number of cells (1 in 476,000) with large magnetic moments (8-106 fAm(2)) from various tissues. The development of single-cell correlative light and electron microscopy (CLEM) coupled with electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) permitted subcellular analysis of magnetic cells. This revealed the presence of extracellular structures composed of iron, titanium, and chromium accounting for the magnetic properties of these cells. Application of single-cell CLEM to magnetic cells from the trout failed to identify any intracellular structures consistent with biogenically derived magnetite. Our work illustrates the need for new methods to test the magnetite hypothesis of magnetosensation.  
  Address Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria; keays@imp.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25535350 Approved no  
  Call Number CBM.UAM @ ccobaleda @ Serial 588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: