toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print

Warning: mysql_fetch_field() expects parameter 2 to be long, string given in /home/arimmora/public_html/refbase/includes/include.inc.php on line 309
  Record Links
Author (up) Kang, K.A.; Lee, H.C.; Lee, J.-J.; Hong, M.-N.; Park, M.-J.; Lee, Y.-S.; Choi, H.-D.; Kim, N.; Ko, Y.-G.; Lee, J.-S. url  doi
openurl 
  Title Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells Type Journal Article
  Year 2014 Publication Journal of radiation research Abbreviated Journal  
  Volume 55 Issue 2 Pages 265-276  
  Keywords combined rf radiation; h 2 o 2; menadione; neuronal cells; reactive oxygen species  
  Abstract The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area WP5 In vitro Expedition Conference  
  Notes Approved no  
  Call Number UNIBAS @ david.schuermann @ Serial 622  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: