toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print

Warning: mysql_fetch_field() expects parameter 2 to be long, string given in /home/arimmora/public_html/refbase/includes/include.inc.php on line 309
  Records Links
Author (up) Huang, C.-Y.; Chang, C.-W.; Chen, C.-R.; Chuang, C.-Y.; Chiang, C.-S.; Shu, W.-Y.; Fan, T.-C.; Hsu, I.C. url  openurl
  Title Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal  
  Volume 9 Issue 8 Pages e104732-e104732  
  Keywords  
  Abstract In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area WP5 In vitro Expedition Conference  
  Notes Approved no  
  Call Number UNIBAS @ david.schuermann @ Serial 548  
Permanent link to this record
 

 
Author (up) Huang, C.-ying; Chuang, C.-yu; Shu, W.-yi; Chang, C.-wei; Chen, C.-ray; Fan, T.-ching; Hsu, I.C. openurl 
  Title Distinct Epidermal Keratinocytes Respond to Extremely Low-Frequency Electromagnetic Fields Differently Type Journal Article
  Year 2014 Publication PloS ONE Abbreviated Journal  
  Volume 9 Issue 11 Pages 1-7  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area WP5 In vitro Expedition Conference  
  Notes Approved no  
  Call Number UNIBAS @ david.schuermann @ Serial 571  
Permanent link to this record
 

 
Author (up) Jin, Y.B.; Choi, S.-H.; Lee, J.S.; Kim, J.-K.; Lee, J.-W.; Hong, S.-C.; Myung, S.H.; Lee, Y.-S. url  openurl
  Title Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression Type Journal Article
  Year 2014 Publication Radiation and environmental biophysics Abbreviated Journal  
  Volume 53 Issue 1 Pages 93-101  
  Keywords combined; extremely low frequency á; tail moment for dna; treatment á comet olive  
  Abstract The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area WP5 In vitro Expedition Conference  
  Notes Approved no  
  Call Number UNIBAS @ david.schuermann @ Serial 559  
Permanent link to this record
 

 
Author (up) Jouni, F.J.; Abdolmaleki, P.; Behmanesh, M.; Movahedin, M. url  doi
openurl 
  Title An in vitro study of the impact of 4mT static magnetic field to modify the differentiation rate of rat bone marrow stem cells into primordial germ cells Type Journal Article
  Year 2014 Publication Differentiation; research in biological diversity Abbreviated Journal  
  Volume 87 Issue 5 Pages 1-8  
  Keywords Bone marrow stem cell; Bone morphogenetic protein 4; Differentiation; Primordial germ cell; Static magnetic field; bone marrow stem cell; bone morphogenetic protein 4  
  Abstract This investigation was performed to evaluate the differentiation capacity and alteration in genes expression patterns during in vitro differentiation of bone marrow stem cells into primordial germ cells using static magnetic field (4mT) and BMP-4 (25ng/ml). The rate of differentiation was investigated using the Real Time-PCR method for tracing expression of differentiation markers (Oct-4, Nanog, C-Myc, Fragilis, Mvh and Stella). Then, immunocytochemical reaction was carried out for detection of marker proteins (Oct4 and Mvh). Increasing of the exposure time of the 4mT SMF (24 and 48h) and treatment time with 25ng/ml BMP4 (48 and 96h) indicated a marked decrease in expression of pluripotency genes (Oct-4, Nanog and C-Myc) and Oct4 protein and increase in primordial germ cell-specific genes (Fragilis, Mvh and Stella) and Mvh protein compared with the control group. Final results showed that in a synergistic manner, the combination of SMF with BMP4 exaggerates the differentiation potential of BMSCs to PGCs by activating the MAPK pathway and altering the Ca(2+) concentration.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number UNIBAS @ david.schuermann @ Serial 607  
Permanent link to this record
 

 
Author (up) Jung, I.-soo; Kim, H.-J.; Noh, R.; Kim, S.-C.; Kim, C.-wha url  openurl
  Title Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells Type Journal Article
  Year 2014 Publication Bioelectromagnetics Abbreviated Journal  
  Volume 35 Issue 7 Pages 459-469  
  Keywords 2-de; extremely low-frequency magnetic fields; neural differentiation; pc12  
  Abstract Extremely low-frequency magnetic fields (ELF-MFs) affect various cellular processes and systems, such as cell proliferation, differentiation and metabolic pathways. The present study investigated ELF-MFs effect on nerve growth factor (NGF) induced neuronal differentiation of PC12 cells using proteomic applications to understand its role in the enhancement of neuronal differentiation. After 50 Hz, 1 mT ELF-MFs 5-day exposure on NGF induced PC12 cells, it was observed to increase neurite length as well as an increase in the number of neurite bearing cells. It was also discovered that there was a decrease in proliferation activity, which is associated with an increase in differentiated cells. Neuronal differentiation related mRNA levels and protein levels were increased in NGF induced PC12 cells. Compared with NGF induced group, ELF-MFs stimulated PC12 cells had different protein expression as measured with two-dimensional electrophoresis (2-DE) gels. Consequently six differentially expressed spots were detected between the 2-DE maps, which were identified by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF LC/MS/MS) as: peripherin, neurosecretory protein nerve growth factor inducible (VGF8a) precursor, dnaK-type molecular chaperone sp72-ps1 (HSP72-psI), low molecular weight (Mr) phosphotyrosine protein phosphatase isoenzyme AcP1 (LMW-PTP/ACP1), Tubulin alpha-1A (TUBA1A) chain, outcome predictor in acute leukemia 1 homolog (OPA1L). The identification of these proteins provides clues to the mechanism of ELF-MFs stimulation on NGF induced PC12 cells that occur during neuronal differentiation and may contribute to the development novel treatments for neurodegenerative diseases. Bioelectromagnetics 35:459-469, 2014. © 2014 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2009008294 ISBN Medium  
  Area WP5 In vitro Expedition Conference  
  Notes Approved no  
  Call Number UNIBAS @ david.schuermann @ Serial 554  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: